The Need for Well-Factored Dynamic
Parallel Programming Systems,
and Why Charm++ is a Good Choice

Phil Miller

Advanced Modeling & Simulation (AMS) Seminar Series,
NASA Ames Research Center, September 12, 2016

J§LLLINOIS HEH charmworks ~ PARALLEL M

PROGRAMMING LAB |
DEPT.OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Decomposition

* Decompose the work units & data units into
many pieces
— Cores/Nodes/..
* Not so hard: we do (over) decomposition
anyway
— Multi-block and AMR on structured meshes
— Unstructured mesh partitions
— N-body tree code ‘leaves’
— Blocked linear algebra

Task/Object Placement

* Those pieces have to go somewhere

* Nalve reasons:
— Matching (range of) indices
— Easy to compute ID<->place mapping

 Good reasons: (e.g.)
— Load balance
— Communication locality on core/node
— Communication locality over network
— Workload affinity for hardware type

Task/Object Movement

* |sthe chosen placement the best possible?
 Can you change it?

— Without restarting the application?
e Why?

— Load not as predicted (or assumed)

— Load changed

— Hardware performance changed(?!)
— Part of hardware failed

Asynchronous Execution

* Work shouldn’t have to ‘wait its turn’
* Components should be willing to share

* |l.e., Composition of independent tasks
— Steps of a parallel algorithm
— Multi-module and multi-physics

— Using all hardware resources, all the time

Missing Optimizations

e Second-order placement effects
* Load balancing frequency

* Dynamic critical paths

* Energy usage

Why do it all by yourself, in every app?

Instantiations of

Charm++
— Including Adaptive MPI

KAAPI
HPX
StarPU
OmpSs
ParSEC

these ideas

CnC
Chapel
X10

Every AMR framework
— Especially Uintah

ProActive
FG-MPI
MPC

Why Charm++

Application experience
— NAMD, EpiSimdemics, ChaNGa

— OpenAtom, Fractography, Stochastic MIP, Cloth Simulation
Interoperation with native MPI code

— Easy, low risk, incremental adoption

Production-ready development

— Portability

— Stability

— Compatibility

Rich, Extensible Ecosystem

Comprehensive feature set

Why Charm++

Application experience
— NAMD, EpiSimdemics, ChaNGa

— OpenAtom, Fractography, Stochastic MIP, Cloth Simulation
Interoperation with native MPI code
— Easy, low risk, incremental adoption

Production-ready development
— Portability

— Stability

— Compatibility

Rich, Extensible Ecosystem
Comprehensive feature set

NAMD: Biomolecular Simulations

Long-term collaboration
(1994-now) with
K. Schulten

Over 70,000 users

Scaled to top US
supercomputers

2002 Gordon Bell award
2012 Fernbach award

Y
WS TS &
e O " e 56
& 4 A
o Ll O R,

% woF B X ok g G ¥
A B %3
25 % o, PP
a3 3 SN

Lo g s
) 4

Ny A ‘
AN

: 5 SRy g K5 3
o ol % AT
eva et
PR

Science cover article:
Determination of HIV capsid structure

10

NAMD on Petascale Machines (2fs timestep with PME)

30 21M atoms

16

-

L 224M atoms
2 + ” i

Titan XK7 ——
Blue Waters XE6 —w— |

0.25 | | - Mira Blue Gene/Q |_E_

256 512 1024 2048 4096 8192 16384
Number of Nodes

\

Performance (ns per day)

0.5 |

NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and Mira IBM Blue
Gene/Q for 21M and 224M atom benchmarks

Time Profile of ApoAl on Power7 PERCS

92,000 atom system, on 500+ nodes (16k cores)

Time Profile

95

%0 1% 2ms total >

85

A snapshot of optimization in progress.. Not the final result

707

Percentage Utilization
w W Y Py [9 [} [}
(=] w [=] w (=] w [=] w
1 1 1 1 1 1 1

N
w

20

15 73

10

Sh

o .
19.482s 19.4822s 19.4824s 19.4826s 19.4828s 19.483s 19.4832s 19.4834s 19.4836s 19.4838s 19.484s
Time (0.002ms resolution)

Overlapped steps, as a result of asynchrony
12

Timeline of ApoAl on POWER7 PERCS

230us

In Microseconds

13,482,630 = 19482670 19 482 710 19 482 750 19 4 482 330 13,482,870 : 13,482,910 13,482,350
] ||

l =] - 1
[] n
1 W ﬁ :

v

_MWW e

MH#HMHMWNM HHP AT R EE H

H #H i’ HHHHI Ao ==

IR ——— :-] [F-.“::\l‘ | IE*II 00000 IMMW

o et) |
m# R v

Hﬂﬂﬂﬂ‘i | g

13

EpiSimdemics

Simulating contagion over dynamic networks

P=l-exp(tlog(1-I'S)) ~ Location e T social
| o)
b - - t: duration of At contact
A E ..= ﬁg | AT co-presence ”"i"fg,CtEd L1 °2 network
3 - I: infectivit
R 37 y t A{;\{? =

- S:susceptivity

infectious L2
1
P4

S

transition by Localt "
iSi i i i ocal transition
EpiSimdemics’ interaction :
[\[\

@ Agent-based ““. *
/ -0 days
. . . 97 1.0
@ Realistic population data os) -

@ Intervention®

@ Co-evolving network,
behavior and policy? untreated — > = vaceine -

Conversion to Charm++

* Original in MPI, scaling failed at 512 cores

* Headline features:
— Asynchronous reductions
— Easy decomposition experiments
— Streaming all-to-all

— Composition - split mid-run for multiple scenarios,
overlap on full job partition

Load distribution (vulcan)

RR Gp .Z BR Zp QP
splitLoc splitLoc | splitLoc | splitLoc

(1.755 s) 1 (1.583 s) (1.222 s) (0.438 s) (0.369 s){(0.368 S}

splitLoc: no peak in location computation GP: shorter person phase
Z-splitLoc: no load balance ZC-splitLoc: similar perf. w/ GP-splitLoc

@ Blue: person computation X-axis: Time Y-axis: Processor

@ Red: receiver's msg handling Timeline of an iteration from sampled subset of 332
@ Orange: location computation cores of total 4K using Michigan data on Vulcan

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 24/ 26

Strong scaling performance with the largest data set

0
>
©
o
—
o
Q
Q
£
=
c
o
2
o
>
£
w0

0.1

1OOE

10 &

Strong Scaling (BlueWaters | XE6)

RR-splitLoc, noBuf = -3¢ --
RR, mbuf =-=f-=-

- RR-splitLoc, mbuf =---@-—
s B P
\.\. A ~x.:
._.’.\ . ~-¢§-:---A e, A
e ts
*-.,?.(i:\x\ ,
B _x 352K
~. l

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

100 ¢
0
>
©
©
—
(]
o
(O]
£
E
C
(@]
S
©
>
£
(Vp}

0.1

10 E

Number of core-modules

Strong Scaling (Xeon, Infiniband)

RR'Sp“tLOC Sierra’ TRAM eeeee
Cab, TRAM ===
Shadowfax, mbuf = -3¢ --

ey |
%3’.};"
gy
.”""\’.\.‘
Ve

'.-.,.

| | | | | |
512 1K 2K 4K 8K 15K

Number of cores

E RR, TRAM e @
- RR-splitLoc, mbuf = =--@-=-
L RR-splitLoc, noBuf

Simulation time per day (s)

Strong Scaling (Vulcan | BG/Q)

T T

RR, mbuf =-=fe-=

RR-splitLoc, TRAM =t
l l l l l l l |

1K 2K 4K 8K 16K 32K 64K 128K
Number of cores

Contiguous US population data

XEG6: the largest scale (352K cores)

BG/Q: good scaling up to 128K cores

Strong scaling helps timely reaction to
pandemic

Virginia Tech

Network Dynamics & Simulation Science Lab

April 30, 2014 26 /26

ChaNGa: Cosmology Simulation

Collaboration with
Tom Quinn at UW

* Tree: Represents
particle distribution

 TreePiece: object/
chares containing
particles

Multiple time-stepping!

* Our scientist collaborators suggest an algorithmic
optimization:
— Don’t move slow-moving particles every step
* j.e. don’t calculate forces on them either

— In fact, make many (say 5) categories (rungs) of
particles based on their velocities
— Rung sequence (with 5 rungs)

«4342434143424340
* Rung 0: all particles, Rung 4: fastest-moving particles

— Each tree-piece object now presents a different load
when different “rungs” are being calculated

Multiple time-stepping!

Load (for the same object) changes across rungs
— Yet, there is persistence within the same rung!

— So, specialized phase-aware balancers were developed

TreePieces

35000

30000 —

25000 -

20000 —

15000 —

10000 —

5000 -

05 1
Load

(a) Rung 0

TreePieces

260000 1

800

600

400

200

05 1 15
Load

(b) Rung 4

Multi-stepping tradeoff

* Parallel efficiency is lower,
but performance is much better

Time per Step (s)

J 28 v emmr e e e -

Time per Step =>€—
Parallel Efficiency = === _

16384 32768

Number of Cores

Single Stepping

65536 131072

128 -

Time per Step =3¢— _
T Rt g Parallel Efficiency ===
-~-+~~ A

16384 32768 65536 131072

Number of Cores

Multi Stepping

100

80

Parallel Efficiency (%)

Why Charm++

Application experience
— NAMD, EpiSimdemics, ChaNGa

— OpenAtom, Fractography, Stochastic MIP, Cloth Simulation
Interoperation with native MPI code

— Easy, low risk, incremental adoption

Production-ready development

— Portability

— Stability

— Compatibility

Rich, Extensible Ecosystem

Comprehensive feature set

MPI Interoperability

Make calls between MPI and Charm++ code

Implement each parallel kernel in the most
suitable model

Code shares process address space

— Can pass plain pointers across interface

Control transfer between Charm++ and MPI

analogous to MPI code calling external
libraries (e.g. ParMETIS, FFTW, PETSc, Hypre)

MPI Interoperability Modes

(c) Combined Sharing

O s o 1\) e | <

(b) Space Sharing

3l o | | E—

(a) Time Sharing

OO s NN\ — 3
NN\ _H__Uy///////zﬂ_ﬂ_m

AN\ i | NN i

>

Time

%/ MPI Control
D Charm++ Control

MPI Interoperability Code

* Includempi-interoperate.h

e Add an interface function callable from the
main program

void HelloStart(int elems)
if(CkMyPe() == 0) {
CProxy_MainHello mainhello =
CProxy_MainHello::ckNew(elems);

}
StartCharmScheduler();

}

MPI Interoperabilty: Control Flow

Begin execution at user main

Perform MPI initialization and application initialization
Create a communicator for Charm++

Initialize Charm++

for (as many times needed)
— perform MPI based communication and application work
— invoke Charm++ code

Exit Charm++
Exit MPI

MPI Interoperability: Example Code

MPI_Init(argc,argv); //initialize MPI
//Do MPI related work here

//create comm to be used by Charm-+
MPI_Comm_split(MPI_COMM_WORLD, myRank % 2, myRank, newComm);

CharmLiblnit(newComm,.) //initialize Charm++ over my communicator

if(myRank % 2)
StartHello(); //invoke Charm+ library on one set

else
//do MPI work on other set

kNeighbor(); //invoke Charm++ library on both sets
CharmLibExit(); //destroy Charm--

MPI Interoperability: Use Cases

* Demonstrated in HPC Challenge submission
with FFT benchmark

* Chombo AMR framework using parallel
sorting library from

— Highly Scalable Parallel Sorting by Edgar
Solomonik and Laxmikant Kale (IPDPS, 2009)

e EpiSimdemics using MPI-10

Why Charm++

Application experience
— NAMD, EpiSimdemics, ChaNGa

— OpenAtom, Fractography, Stochastic MIP, Cloth Simulation
Interoperation with native MPI code

— Easy, low risk, incremental adoption

Production-ready development

— Portability

— Stability

— Compatibility

Rich, Extensible Ecosystem

Comprehensive feature set

Development: Portability

Compilers: GNU, Intel, IBM, Clang, Cray, PG
Network: BlueGene *, Cray *, IB Verbs, TCP/IP
CPU Architectures: x86, POWER, BG *, ARM
OS: Linux, Mac, Windows, BG *

Development: Stability

Nightly cross-platform testing

Thorough test coverage

Continuous Integration against applications
Code Review of every commit

RTS runs clean under Valgrind, ASan, & UBSan
SMP build is mostly ThreadSanitizer clean

Development: Compatibility

* Frivolous APl changes avoided

* NAMD always tested for compatibility,
forward and backward

Why Charm++

Application experience
— NAMD, EpiSimdemics, ChaNGa

— OpenAtom, Fractography, Stochastic MIP, Cloth Simulation
Interoperation with native MPI code

— Easy, low risk, incremental adoption

Production-ready development

— Portability

— Stability

— Compatibility

Rich, Extensible Ecosystem

Comprehensive feature set

Features & Ecosystem

Automatic offline & online fault tolerance
— Checkpoint in one line, transparent restart, any number of processors

Plethora of LB strategies
— Easy to plug in your own
Scalable tools
— CharmDebug parallel debugger
— LiveViz online visualization client
— Projections performance analysis tool
Resource Optimizations
— In-job power & energy:
— Job size tuning via shrink/expand:
— Across-job power & energy: scheduling with power constraints

Why Charm++

Application experience
— NAMD, ChaNGa, EpiSimdemics

— OpenAtom, Fractography, Stochastic MIP, Cloth Simulation
Interoperation with native MPI code
— Easy, low risk, incremental adoption

Production-ready development
— Portability

— Stability

— Compatibility

Rich, Extensible Ecosystem
Comprehensive feature set

Questions?

